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The problem with InP-based near-IR lasers

• Threshold increases by a factor of 20 from 

100K to 300K and increases by a further factor 

of 11 from 300K to 380K

• Strong decrease in slope efficiency only above 

300K

• Both degrade high temperature performance
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Hot electrons Hot holes

Auger recombination: two basic types

CHCC n2p CHSH p2n



Lasing Energy (eV)
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Band gap dependence of threshold current                                              
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Inter-Valence Band Absorption (IVBA)
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IVBA affects both threshold and slope 

efficiency and is also sensitive to the 

spin-orbit splitting, SO
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If  SO>Eg CHSH is not allowed

Conduction

Band

Spin Orbit Split-off 

Band

Heavy Hole

CHCC process may still 

occur

Light HoleLight Hole

CHCCCHSH

Auger suppression and persistence…



Lasing Energy (eV)
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1.4• InP devices: Laser 

performance gets worse 

with increasing wavelength 

(higher Jth, lower To etc.)

• Dominant path associated 

with hot-hole producing 

(CHSH) Auger process

• BUT, in GaSb based mid-IR 

lasers CHSH is suppressed 

since Eg<so

• Antimonides won’t help as 

much in the near IR…

InGaAsP/InPInGaAsSb/GaSb
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Learning from the mid-IR…
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Can we achieve the same in the near-IR?

• The Spin-orbit splitting is a strong function of the 

group V element atomic number

• Bismuth is the largest stable group V element

 Exhibits BAC effect in VB (cf. dilute nitrides)

 Giant spin-orbit splitting bowing



Band engineering of GaAs(Bi,N)
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N atoms in GaAs:

• reduced Eg arising 

from

the N-CB anticrossing

Bi atoms in GaAs:

• reduced Eg originating 

(mainly) from the Bi-VB 

anticrossing

• large increase in so

GaAsN                            GaAsBi                               GaAsBiN

Wide scope for 

optoelectronic 

device designs



GaAsBi alloys – PL

1.55m

• MBE-grown samples up to ~10% Bi

• Weak temperature dependence of 

band gap due to valence band anti-

crossing effect

- Potentially very beneficial for 

devices (eg. smaller de-tuning 

relative to grating in DFB laser)

Samples grown at UBC, from Tom Tiedje (now UVic) & Xianfeng Lu (now ASU), 

PL with Shane Johnson & Ding Ding (ASU)



Spin orbit transition
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Spin orbit transition
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Cross-over around 

10% Bismuth

10.4%
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Quaternary GaAsNBi/GaAs for MidIR
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Strain (%)

SO, Eg, strain and band offsets well 

controlled with this alloy

Potential to make 

SO>Eg and C>Eg +kT

(also suppress CHCC?)

GaAsN/GaAsBi

(Type II)
GaAsNBi/GaAs

(Type I)



Summary

• Near-IR InP based lasers suffer from Auger 
recombination (and IVBA). This lead to high thresholds, 
low efficiency and temperature sensitivity 

• If Eg<so the hot-hole generating CHSH Auger process 
(and IVBA) may be minimised/eliminated. This may be 
possible with Bismides.

• Bismides alloys offer flexible control of Eg , so , band 
offsets, band alignment and strain

• Candidate materials include GaAsBi for the near-IR and 
GaNAsBi for mid-IR applications


