

The Potential of III-Bismides for Near- and Mid-IR Photonic Devices

Stephen J. Sweeney, Zahida Batool, T. Jeff C. Hosea and Shirong R. Jin

Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK

The problem with InP-based near-IR lasers

- Threshold increases by a factor of 20 from 100K to 300K and increases by a <u>further</u> factor of 11 from 300K to 380K
- Strong decrease in slope efficiency only above 300K
- <u>Both</u> degrade high temperature performance

Auger recombination: two basic types

UNIVERSITY OF

Band gap dependence of threshold current (from pressure measurements)

Inter-Valence Band Absorption (IVBA)

IVBA affects both threshold and slope efficiency and is also sensitive to the spin-orbit splitting, Δ SO

Auger suppression and persistence... **UNIVERSITY OF** SUKR **CHSH CHCC** Conduction Conduction Band Band Heavy Hole **Heavy Hole** Light Hole Light Hole **Spin Orbit Split-off Spin Orbit Split-off** Band Band

If $\Delta_{SO} > E_g$ CHSH is not allowed

www.surrey.ac.uk

CHCC process may still

occur

Learning from the mid-IR...

- InP devices: Laser performance gets worse with increasing wavelength (higher J_{th}, lower T_o etc.)
- Dominant path associated with hot-hole producing (CHSH) Auger process
- BUT, in GaSb based mid-IR lasers CHSH is suppressed since $E_g < \Delta_{so}$
- Antimonides won't help as much in the near IR…

Can we achieve the same in the near-IR?

- The Spin-orbit splitting is a strong function of the group V element atomic number
- Bismuth is the largest stable group V element
 Exhibits BAC effect in VB (cf. dilute nitrides)
 - Giant spin-orbit splitting bowing

2500

Band engineering of GaAs(Bi,N) **UNIVERSITY OF**

• reduced E_q arising from the N-CB anticrossing

 reduced E_g originating (mainly) from the Bi-VB anticrossing

• large increase in Δ_{so}

optoelectronic device designs

GaAsBi alloys – PL

Samples grown at UBC, from Tom Tiedje (now UVic) & Xianfeng Lu (now ASU), PL with Shane Johnson & Ding Ding (ASU)

www.surrey.ac.uk

UNIVERSITY OF

Photomodulated Reflectance (RT) Spectroscopy on GaAsBi/GaAs

Quaternary GaAsNBi/GaAs for MidIR

Summary

- Near-IR InP based lasers suffer from Auger recombination (and IVBA). This lead to high thresholds, low efficiency and temperature sensitivity
- If $E_g < \Delta_{so}$ the hot-hole generating CHSH Auger process (and IVBA) may be minimised/eliminated. This may be possible with Bismides.
- Bismides alloys offer flexible control of $\rm E_{g}$, $\Delta_{\rm so\,,}$ band offsets, band alignment and strain
- Candidate materials include GaAsBi for the near-IR and GaNAsBi for mid-IR applications